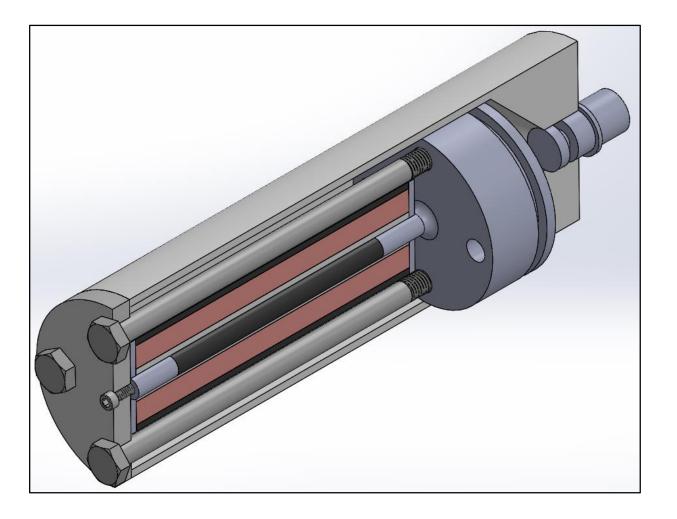
Magnetostrictive Torque Motor

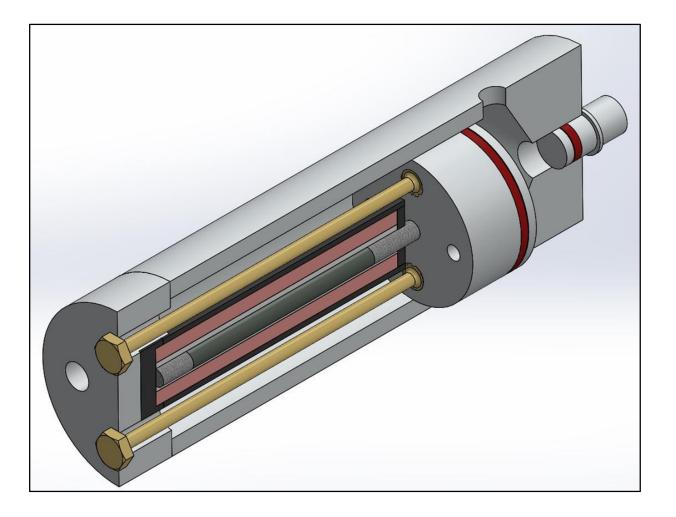
Midpoint Progress

Randall Bateman, Aaron Bolyen, Chris Cleland Alex Lerma, Xavier Petty, and Michael Roper

March 10, 2016


Overview

- Introduction
- Original Design
- Current Design
- Current Progress
- Problems with Design
- Changes to Design
- Currently Working On
- Future Work
- Conclusion


Introduction

- Honeywell Aerospace designs and manufactures numerous products and services for the commercial and military aircraft industry
- Honeywell contacts initiating the project are Michael McCollum, the Chief Engineer of Pneumatic Controls Technology and Mitchell Thune, a recent NAU graduate who is working with Michael McCollum on this project
- The clients want to replace an electromagnetic solenoid with a magnetostrictive material, Terfenol-D, in the pneumatic control systems used on commercial airliners

Original Design

Current Design

Current Progress

- So far, we have manufactured:
 - Aluminum cylindrical housing and endcap
 - Large and small pistons with seals fitted
 - o Iron solenoid housing
 - Pre-stress bolts
- Also, we have a solution for filling the hydraulic chamber

Assembly

Acquired Components

Core Setup

Aluminum Endcap

Aluminum Housing

Brass pre-stress bolts

Small Piston

Large Piston

Changes to Design

- Increased thickness of aluminum endcap
 - o Solenoid assembly length remains the same
- Iron endcap for solenoid housing
 - \circ Heat fit
- Pre-stress bolts (number, diameter, and material)
- Chamber fill hole
- Small piston shaved down to fit seal

Iron Endcap

Problems with Design

- Fluid properties change over range of temperatures
 - Brake fluid expands with temperature changes
- Completing magnetic circuit (iron component)
 - NAU fabrication shop cannot weld iron to iron
- Filling the fluid chamber
 - Chamber must be sealed to prevent leakage when compressed
 - Chamber is difficult to refill
- Lead times

Currently Working On

- Drilling bleeder valve hole
- Finishing iron pieces
 - \circ End caps
 - \circ Core stops
- Threaded piston holes
 - Need to increase hole size to fit the bolts

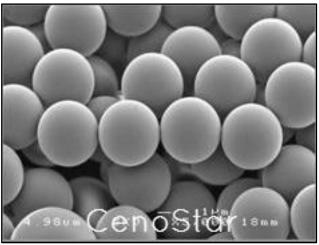
Bill of Materials

Item	Individual Cost (\$)	Quantity	Total Cost (\$)
Aluminum	41.52	2	83.04
Iron Tube	138.00	1	138.00
Iron Rod	171.00	1	171.00
Solenoid	790.00	1	790.00
Brass	10.97	1	10.97
Terfenol-D	447.00	1	447.00
Large Seal	5.56	1	5.56
Small Seal	3.94	1	3.94
Brake Fluid	9.95	1	9.95
Cenospheres	12.55	1	12.55
Total Cost			1672.01

Future Work

- Fill with fluid
 - Fluid chamber needs to be tested using a stand-in fluid to check for accuracy of movement and unexpected results
 - Contingencies:

New bleeder valve system, different materials vs lead times for obtaining and machining stock, potential need for cooling system, any redesigns must be minute


Aluminum Housing

Future Work

- Cenosphere testing
 - o Test viability of cenospheres in lieu of fluid
 - Contingencies:
 Find other viable fluid or obtain finer grain cenospheres
- Press fitting iron components
 - Iron washer used to complete magnetic circuit needs to be press fit into iron core cylinder
 - Contingencies:

If heat cannot be achieved, stronger heat gun must be acquired, must obtain more iron stock if the washer crushes or cylinder cracks upon cooling during press-fit process

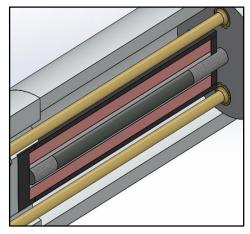
Iron Core Cylinder

Future Work

- Attaching back end plate to main cylinder
 - Original design does not have internal parts physically secured to outer cylinder

Contingencies:

Thread additional external end cap to secure internal components, insert set screw through external shell the back end cap


- Solenoid wiring
 - o Internal solenoid must connect to external power source
 - Contingencies:

Redesign back end plate, drill hole in portion of wall that does not bear load, or integrate internal wiring/circuitry

Endplate and Cylinder

Solenoid Location

Conclusions

- Original design did not meet assembly and manufacturability requirements
- We currently have the aluminum outer case, the aluminum pistons, and the brass bolts completed
- The major issues that are being faced is filling the vacuum fluid chamber and completing the magnetic circuit
- There have been several changes to the original design from Fall semester 2015. The number of components is the same, but their positioning and dimensions have changed
- Currently there are several work orders being manufactured. Once these work orders are complete, the only missing component will be the solenoid
- The next step in the design process is to fill the fluid chamber and begin testing with alternative design options